Yafei Wang 1†Yinggang Chen 1,2Shikai Wang 1,*Meng Wang 1[ ... ]Lili Hu 1,3,*
Author Affiliations
Abstract
1 Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Key Laboratory of Materials for High Power Laser, Shanghai, China
2 University of Chinese Academy of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Hangzhou Institute for Advanced Study, Hangzhou, China
4 South China University of Technology, School of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangzhou, China
Ultrashort pulses at 920 nm are a highly desired light source in two-photon microscopy for the efficient excitation of green fluorescence protein. Although Nd3 + -doped fibers have been utilized for 920-nm ultrashort pulse generation, the competitive amplified spontaneous emission (ASE) at 1.06 μm remains a significant challenge in improving their performance. Here, we demonstrate a coordination engineering strategy to tailor the properties of Nd3 + -doped silica glass and fiber. By elevating the covalency between Nd3 + and bonded anions via sulfur incorporation, the fiber gain performance at 920 nm is enhanced, and 1.06-μm ASE intensity is suppressed simultaneously. As a result, the continuous-wave laser efficiencies and signal-to-noise ratio at 920 nm by this fiber are significantly enhanced. Importantly, the stable picosecond pulses at 920 nm are produced by a passive mode-locking technique with a fundamental repetition rate up to 207 MHz, which, to the best of our knowledge, is the highest reported repetition rate realized by Nd3 + -doped silica fibers. The presented strategy enriches the capacity of Nd3 + -doped silica fiber in generating 920-nm ultrashort pulses for application in biophotonics, and it also provides a promising way to tune the properties of rare-earth ion-doped silica glasses and fibers toward ultrafast lasers.
rare-earth-doped fiber ultrashort pulse high repetition rate fiber laser 
Advanced Photonics Nexus
2023, 2(6): 066002
Author Affiliations
Abstract
1 South China University of Technology, School of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangzhou, China
2 South China University of Technology, School of Physics and Optoelectronics, Guangzhou, China
3 Zhejiang University, School of Materials Science and Engineering, Hangzhou, China
4 Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China
Lead halide perovskite materials exhibit excellent scintillation performance, which, however, suffer from serious stability and toxicity problems. In contrast, the heavy metal-free anti-perovskite materials [ MX4 ] XA3 (A = alkali metal; M = transition metal; X = Cl, Br, I), a class of electron-inverted perovskite derivatives, exhibit robust structural and photophysical stability. Here, we design and prepare a lead-free [ MnBr4 ] BrCs3 anti-perovskite nanocrystal (NC)-embedded glass for efficient X-ray-excited luminescence with high-resolution X-ray imaging with a spatial resolution of 19.1 lp mm - 1. Due to the unique crystal structure and the protection of the glass matrix, the Cs3MnBr5 NC-embedded glass exhibits excellent X-ray irradiation stability, thermal stability, and water resistance. These merits enable the demonstration of real-time and durable X-ray radiography based on the developed glassy composite. This work could stimulate the research and development of novel metal halide anti-perovskite materials and open a new path for future development in the field of high-resolution and ultrastable X-ray imaging.
lead-free metal halides anti-perovskite nanocrystals glass ultrastable X-ray imaging 
Advanced Photonics
2023, 5(4): 046002
作者单位
摘要
1 华南理工大学 材料科学与工程学院 发光材料与器件国家重点实验室, 广东 广州 510641
2 浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室,浙江 杭州 210027
自诺贝尔奖获得者高锟提出可用玻璃光纤代替传统电缆传输线,利用光波导传输光信号的方法来实现信息传输以来,人们就一直致力于优化现有光纤的性能和探索新的光纤激光介质材料。目前,用于光通信系统的光纤激光器和光放大器的增益光纤多见于稀土离子掺杂玻璃光纤,然而稀土离子固有的f-f跃迁导致较窄的传输带宽已经无法满足日益剧增的网络数据传输需求。铋(Bi)离子是继过渡金属离子、稀土离子后的第三类激活离子, 是激光材料领域发展的新方向。目前,Bi掺杂玻璃光纤已经在1150~1550 nm和1600~1800 nm范围内实现了激光输出和光信号放大。这充分说明了Bi掺杂玻璃光纤有望解决现有数据传输能力不足的问题,成为新一代光纤激光器和放大器的增益材料。因此,文中主要介绍Bi掺杂玻璃和光纤的研究进展,分析Bi掺杂玻璃及光纤材料目前存在的问题,并展望了未来的研究方向。
超宽带 红外发光 Bi掺杂玻璃 Bi掺杂光纤 ultra-broadband infrared luminescence Bi-doped glass Bi-doped fiber 
红外与激光工程
2023, 52(5): 20230097
作者单位
摘要
1 华南理工大学 材料科学与工程学院,发光材料与器件国家重点实验室,广东 广州 510641
2 华南理工大学 物理与光电学院,广东 广州 510641
近年来,全无机钙钛矿量子点因其优异的光电性能受到研究者的广泛关注,但其较差的稳定性极大地限制了其应用。利用玻璃优异的稳定性,控制钙钛矿量子点在玻璃中原位析出,使玻璃包覆在钙钛矿量子点周围,隔绝其与外界环境的接触,有效地提高了其稳定性。通过在钙钛矿量子点玻璃中掺杂特定的离子可以调控钙钛矿量子点的析晶情况和发光峰位,并可引入新的发光中心。本文根据掺杂离子的目的,综合介绍了离子掺杂钙钛矿量子点玻璃的研究进展,为近期关于离子掺杂钙钛矿量子点玻璃的研究提供了思路和参考。
玻璃 钙钛矿量子点 离子掺杂 glass perovskite quantum dots ion doping 
发光学报
2023, 44(3): 437
作者单位
摘要
1 清远南玻节能新材料有限公司,清远 511650
2 华南理工大学,材料科学与工程学院,广州 510641
移动通信的发展使人们对移动电子设备的需求大大增加,也给相应的盖板玻璃行业带来繁荣。各个玻璃厂商都基于传统铝硅酸盐玻璃推出了自己的优质产品,然而通过调整配方、改进化学钢化制度等传统方式来进一步提高玻璃性能正变得困难。近期通过晶化增强玻璃力学性能的透明微晶玻璃引起了行业的广泛关注。本文首先回顾已成熟的化学钢化工艺,并介绍其在高碱铝硅玻璃上的应用。随后介绍应用于盖板玻璃的透明铝硅酸盐微晶玻璃。最后,对传统钢化玻璃、新型透明微晶玻璃的研究以及未来的发展趋势进行总结。
铝硅酸盐玻璃 盖板玻璃 微晶玻璃 化学钢化 表面压应力 aluminosilicate glass cover glass glassceramics chemical temping compressive stress 
硅酸盐通报
2022, 41(11): 3925
作者单位
摘要
1 宁波大学高等技术研究院红外材料及器件实验室, 宁波 315211
2 华南理工大学材料科学与工程学院, 广州 510640
光电功能纳米晶复合玻璃光纤在光通信、遥感、生物医学和非线性光学等领域具有广阔的应用前景。本文呈现了一种通用的光纤拉制方法(管内熔融法)来制备纳米晶复合玻璃光纤。在光纤制备过程中, 纤芯处于完全熔融状态, 而包层恰好处于软化状态。基于此方法, 介绍了玻璃纤芯-玻璃包层光纤、晶体纤芯-玻璃包层光纤和半导体纤芯-玻璃包层光纤的最新研究进展。此外, 还讨论了纳米晶复合玻璃光纤在光纤激光、光纤传感、频率转换、光电探测和热电转换等领域的广泛应用。
纳米晶复合玻璃光纤 管内熔融法 光电性能 nanocrystals doped glass fibers melt-in-tube method optoelectronic properties 
硅酸盐学报
2022, 50(4): 1172
作者单位
摘要
1 华南理工大学材料科学与工程学院发光材料与器件国家重点实验室,广东省激光光纤材料与 应用重点实验室,广东 广州 510640
2 华南理工大学物理与光电学院,广东 广州 510640
3 浙江大学光电科学与工程学院,浙江 杭州 310027
随着激光玻璃及光功能玻璃应用需求的快速增长,对光功能玻璃在光学性能和机械性能的要求越加趋向于多元化,而玻璃结构的不确定性和组分连续可调的特性阻碍了新型光功能玻璃材料的快速研发,为了摆脱传统的“试错型”设计模式,缩短玻璃材料开发的成本与周期,提升玻璃材料设计与制备过程的可预测性,“材料基因组计划”应运而生。“材料基因组计划”将高性能计算、数据和实验相结合,根据材料的组分对材料的特性进行定量地准确预测,从而指导新型材料的设计与开发。本文归纳并总结了目前应用于激光玻璃及光功能玻璃领域中的“材料基因工程”的不同理论与建模流程,分为基于物理定义推导的物理性方法、对实验数据进行统计分析的经验性方法、理论和经验相结合的理论-经验结合法。在此基础上,从激光玻璃和光功能玻璃材料出发,重点介绍“材料基因工程”在该领域的最新进展,并对未来的发展方向进行了展望。
材料 材料基因组计划 玻璃 理论计算 成分-结构-性质关系 
激光与光电子学进展
2022, 59(15): 1516002
作者单位
摘要
激光与光电子学进展
2022, 59(15): 1500000
王伟 1古权 1陈钦鹏 1尹博钊 1[ ... ]董国平 1,**
作者单位
摘要
1 华南理工大学材料科学与工程学院,发光材料与器件国家重点实验室,广东 广州 510640
2 华南理工大学分析测试中心,广东 广州 510640
3 华南理工大学物理与光电学院,广东 广州 510640

宽带可调谐中红外光源在光谱传感器以及医疗、环境监测等实际应用方面备受关注。目前,发光玻璃主要通过稀土离子掺杂来实现中红外波段发光,但其可调范围较小。PbSe量子点具有较窄的带隙、较大的玻尔半径,因而易实现量子限域效应。在低声子能量的锗酸盐玻璃中原位析出PbSe量子点,有望产生近中红外宽带可调谐荧光发射。本课题组利用管内熔融法成功制备了全固态PbSe量子点掺杂玻璃光纤,获得了覆盖1.8~2.8 μm的宽带可调谐发射,有望用于宽带可调谐中红外光源。

光纤光学 PbSe量子点 玻璃光纤 中红外宽带发光 管内熔融法 
中国激光
2022, 49(1): 0101013
Author Affiliations
Abstract
1 State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2 Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
3 Analytical and Testing Center, South China University of Technology, Guangzhou 510640, China
4 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
With the rapid growth of optical communications traffic, the demand for broadband optical amplifiers continues to increase. It is necessary to develop a gain medium that covers more optical communication bands. We precipitated PbS quantum dots (QDs) and BaF2:Tm3+ nanocrystals (NCs) in the same glass to form two independent emission centers. The BaF2 NCs in the glass can provide a crystal field environment with low phonon energy for rare earth (RE) ions and prevent the energy transfer between RE ions and PbS QDs. By adjusting the heat treatment schedule, the emission of the two luminescence centers from PbS QDs and Tm3+ ions perfectly splices and covers the ultra-broadband near-infrared emission from 1200 nm to 2000 nm with bandwidth over 430 nm. Therefore, it is expected to be a promising broadband gain medium for fiber amplifiers.
PbS quantum dot Tm3+ nanocrystal-glass composite broadband near-infrared emission 
Chinese Optics Letters
2022, 20(2): 021603

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!